Автономные дроны Google будут раздавать 5G-интернет

Автономные дроны Google будут раздавать 5G-интернет

Автономные дроны Google будут раздавать 5G-интернет

Google по-прежнему не даёт покоя вопрос максимального интернет-покрытия всего земного шара. После довольно необычного проекта Loon, в рамках которого интернет раздаётся с высотных аэростатов, группа инженеров лаборатории Google X переключилась на совершенно новый проект под кодовым названием Skybender. Ключевым моментом этой программы станут автономные дроны на солнечных батареях, которые будут раздавать 5G-интернет на скорости в 40 раз превосходящей стандарт LTE.

Официально проект пока не был анонсирован, а обнародовал его портал The Guardian, сославшись на некие секретные документы. Согласно этим записям, Google в данный момент тестирует дроны на солнечных батареях на территории космопорта «Америка» в Нью-Мексико. Технология передачи сигнала использует миллиметровые радиоволны на частоте 28 ГГц. У данной технологии имеется один серьёзный недостаток – такой интернет можно раздавать лишь на сравнительно небольших дистанциях, зато его скорость превосходит стандарт LTE в 40 раз, достигая нескольких гигабит в секунду. Впервые миллиметровые волны для передачи данных были использованы военным агентством DARPA в 2012 году.

Автономные дроны Google будут раздавать 5G-интернет

Приспособить дронов под раздачу подобного интернета – задача не из лёгких, но, судя по всему, у Google имеются свои идеи на этот счёт, так что проблему с короткими дистанциями инженеры компании вполне могут решить. Раздавать интернет будут при помощи «опционально пилотируемых самолётов» (OPA) Centaur, а также с автономных дронов Solara 50 на солнечных батареях, которые производит компания Titan Aerospace. Согласно документам, у корпорации Google есть разрешение комиссии FCC на проведение этих тестов вплоть до июля 2016 года.

Как долго лететь к ближайшей звезде? Часть первая: современные методы

Как долго лететь к ближайшей звезде? Часть первая: современные методы

Дедал

В какой-то момент жизни каждый из нас задавал этот вопрос: как долго лететь к звездам? Можно ли осуществить такой перелет за одну человеческую жизнь, могут ли такие полеты стать нормой повседневности? На этот сложный вопрос очень много ответов, в зависимости от того, кто спрашивает. Некоторые простые, другие сложнее. Чтобы найти исчерпывающий ответ, слишком многое нужно принять во внимание.

К сожалению, никаких реальных оценок, которые помогли бы найти такой ответ, не существует, и это расстраивает футурологов и энтузиастов межзвездных путешествий. Нравится нам это или нет, космос очень большой (и сложный), и наши технологии все еще ограничены. Но если мы когда-нибудь решимся покинуть «родное гнездышко», у нас будет несколько способов добраться до ближайшей звездной системы в нашей галактике.

Ближайшей звездой к нашей Земле является Солнце, вполне себе «средняя» звезда по схеме «главной последовательности» Герцшпрунга – Рассела. Это означает, что звезда весьма стабильна и обеспечивает достаточно солнечного света, чтобы на нашей планете развивалась жизнь. Мы знаем, что вокруг звезд рядом с нашей Солнечной системой вращаются и другие планеты, и многие из этих звезд похожи на нашу собственную.

Экзопланеты

Возможные пригодные для жизни миры во Вселенной

В будущем, если человечество желает покинуть Солнечную систему, у нас будет огромный выбор звезд, на которые мы могли бы поехать, и многие из них вполне могут располагать благоприятными для жизни условиями. Но куда мы отправимся и сколько времени у нас займет дорога туда? Не забывайте, что все это всего лишь домыслы, и нет никаких ориентиров для межзвездных путешествий в настоящее время. Ну, как говорил Гагарин, поехали!

Дотянуться до звезды

Как уже отмечалось, ближайшая звезда к нашей Солнечной системе — это Проксима Центавра, и поэтому имеет большой смысл начать планирование межзвездной миссии именно с нее. Будучи частью тройной звездной системы Альфа Центавра, Проксима находится в 4,24 световых лет (1,3 парсек) от Земли. Альфа Центавра — это, по сути, самая яркая звезда из трех в системе, часть тесной бинарной системы в 4,37 световых лет от Земли — тогда как Проксима Центавра (самая тусклая из трех) представляет собой изолированный красный карлик в 0,13 световых лет от двойной системы.

И хотя беседы о межзвездных путешествиях навевают мысли о всевозможных путешествиях «быстрее скорости света» (БСС), начиная от варп-скоростей и червоточины до подпространственных двигателей, такие теории либо в высшей степени вымышлены (вроде двигателя Алькубьерре), либо существуют лишь в научной фантастике. Любая миссия в глубокий космос растянется на поколения людей.

Итак, если начинать с одной из самых медленных форм космических путешествий, сколько времени потребуется, чтобы добраться до Проксимы Центавра?

Современные методы

Вопрос оценки длительности перемещения в космосе куда проще, если в нем замешаны существующие технологии и тела в нашей Солнечной системе. К примеру, используя технологию, используемую миссией «Новых горизонтов», 16 двигателей на гидразиновом монотопливе, можно добраться до Луны всего за 8 часов и 35 минут.

Есть также миссия SMART-1 Европейского космического агентства, которая двигалась к Луне с помощью ионной тяги. С этой революционной технологией, вариант которой использовал также космический зонд Dawn, чтобы достичь Весты, миссии SMART-1 потребовался год, месяц и две недели, чтобы добраться до Луны.

Dawn

От быстрого ракетного космического аппарата до экономного ионного двигателя, у нас есть парочка вариантов передвижения по местному космосу — плюс можно использовать Юпитер или Сатурн как огромную гравитационную рогатку. Тем не менее, если мы планируем выбраться чуть подальше, нам придется наращивать мощь технологий и изучать новые возможности.

Когда мы говорим о возможных методах, мы говорим о тех, что вовлекают существующие технологии, или о тех, которых пока не существуют, но которые технически осуществимы. Некоторые из них, как вы увидите, проверены временем и подтверждены, а другие пока остаются под вопросом. Вкратце, они представляют возможный, но очень затратный по времени и финансам сценарий путешествия даже к ближайшей звезде.

Ионное движение

Сейчас самой медленной и самой экономичной формой двигателя является ионный двигатель. Несколько десятилетий назад ионное движение считалось предметом научной фантастики. Но в последние года технологии поддержки ионных двигателей перешли от теории к практике, и весьма успешно. Миссия SMART-1 Европейского космического агентства — пример успешно проведенной миссии к Луне за 13 месяцев спирального движения от Земли.

NASA

SMART-1 использовала ионные двигатели на солнечной энергии, в которых электроэнергия собиралась солнечными батареями и использовалась для питания двигателей эффекта Холла. Чтобы доставить SMART-1 на Луну, потребовалось всего 82 килограмма ксенонового топлива. 1 килограмм ксенонового топлива обеспечивает дельта-V в 45 м/с. Это крайне эффективная форма движения, но далеко не самая быстрая.

Одной из первых миссий, использовавших технологию ионного двигателя, была миссия Deep Space 1 к комете Боррелли в 1998 году. DS1 тоже использовал ксеноновый ионный двигатель и потратил 81,5 кг топлива. За 20 месяцев тяги DS1 развил скорости в 56 000 км/ч на момент пролета кометы.

Ионные двигатели более экономичны, чем ракетные технологии, поскольку их тяга на единицу массы ракетного топлива (удельный импульс) намного выше. Но ионным двигателям нужно много времени, чтобы разогнать космический аппарат до существенных скоростей, и максимальная скорость зависит от топливной поддержки и объемов выработки электроэнергии.

Поэтому, если использовать ионное движение в миссии к Проксиме Центавра, двигатели должны иметь мощный источник энергии (ядерная энергия) и большие запасы топлива (хотя и меньше, чем обычные ракеты). Но если отталкиваться от допущения, что 81,5 кг ксенонового топлива переводится в 56 000 км/ч (и не будет никаких других форм движения), можно произвести расчеты.

На максимальной скорости в 56 000 км/ч Deep Space 1 потребовалось бы 81 000 лет, чтобы преодолеть 4,24 световых года между Землей и Проксимой Центавра. По времени это порядка 2700 поколений людей. Можно с уверенность сказать, что межпланетный ионный двигатель будет слишком медленным для пилотируемой межзвездной миссии.

Но если ионные двигатели будут крупнее и мощнее (то есть скорость исхода ионов будет значительно выше), если будет достаточно ракетного топлива, которого хватит на все 4,24 световых года, время путешествия значительно сократится. Но все равно останется значительно больше срока человеческой жизни.

Гравитационный маневр

Самый быстрый способ космических путешествий — это использование гравитационного маневра. Этот метод включает использование космическим аппаратом относительного движения (то есть орбиту) и гравитации планеты для изменения пути и скорости. Гравитационные маневры являются крайне полезной техникой космических полетов, особенно при использовании Земли или другой массивной планеты (вроде газового гиганта) для ускорения.

Космический аппарат Mariner 10 первым использовал этот метод, используя гравитационную тягу Венеры для разгона в сторону Меркурия в феврале 1974 года. В 1980-х зонд «Вояджер-1» использовал Сатурн и Юпитер для гравитационных маневров и разгона до 60 000 км/ч с последующим выходом в межзвездное пространство.

Миссии Helios 2, которая началась в 1976 году и должна была исследовать межпланетную среду между 0,3 а. е. и 1 а. е. от Солнца, принадлежит рекорд самой высокой скорости, развитой с помощью гравитационного маневра. На тот момент Helios 1 (запущенному в 1974 году) и Helios 2 принадлежал рекорд самого близкого подхода к Солнцу. Helios 2 был запущен обычной ракетой и выведен на сильно вытянутую орбиту.

Helios

Из-за большого эксцентриситета (0,54) 190-дневной солнечной орбиты, в перигелии Helios 2 удалось достичь максимальной скорости свыше 240 000 км/ч. Эта орбитальная скорость была развита за счет только лишь гравитационного притяжения Солнца. Технически скорость перигелия Helios 2 не была результатом гравитационного маневра, а максимальной орбитальной скоростью, но аппарат все равно удерживает рекорд самого быстрого искусственного объекта.

Если бы «Вояджер-1» двигался в направлении красного карлика Проксимы Центавра с постоянной скорость в 60 000 км/ч, ему потребовалось бы 76 000 лет (или более 2500 поколений), чтобы преодолеть это расстояние. Но если бы зонд развил рекордную скорость Helios 2 — постоянную скорость в 240 000 км/ч — ему потребовалось бы 19 000 лет (или более 600 поколений), чтобы преодолеть 4,243 световых года. Существенно лучше, хотя и близко не практично.

Электромагнитный двигатель EM Drive

Другой предложенный метод межзвездных путешествий — это радиочастотный двигатель с резонансной полостью, известный также как EM Drive. У предложенного еще в 2001 году Роджером Шойером, британским ученым, который создал Satellite Propulsion Research Ltd (SPR) для реализации проекта, двигателя в основе лежит идея того, что электромагнитные микроволновые полости позволяют напрямую преобразовывать электроэнергию в тягу.

emdrive

Если традиционные электромагнитные двигатели предназначены для приведения в движение определенной массы (вроде ионизированных частиц), конкретно эта двигательная система не зависит от реакции массы и не испускает направленного излучения. Вообще, этот двигатель встретили с изрядной долей скепсиса во многом потому, что он нарушает закон сохранения импульса, согласно которому импульс системы остается постоянным и его нельзя создать или уничтожить, а только изменить под действием силы.

Тем не менее последние эксперименты с этой технологией очевидно привели к положительным результатам. В июле 2014 года, на 50-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference в Кливленде, штат Огайо, ученые NASA, занимающиеся передовыми реактивными разработками, заявили, что успешно испытали новую конструкцию электромагнитного двигателя.

NASA

В апреле 2015 года ученые NASA Eagleworks (часть Космического центра им. Джонсона) заявили, что успешно испытали этот двигатель в вакууме, что может указывать на возможное применение в космосе. В июле того же года группа ученых из отделения космических систем Дрезденского технологического университета разработала собственную версию двигателя и наблюдала ощутимую тягу.

В 2010 году профессор Чжуан Янг из Северо-Западного политехнического университета в Сиань, Китай, начала публиковать серию статей о своих исследованиях технологии EM Drive. В 2012 году она сообщила о высокой входной мощности (2,5 кВт) и зафиксированной тяге в 720 мн. В 2014 году она также провела обширные испытания, включая замеры внутренней температуры со встроенными термопарами, которые показали, что система работает.

По расчетам на базе прототипа NASA (которому дали оценку мощности в 0,4 Н/киловатт), космический аппарат на электромагнитном двигателе может осуществить поездку к Плутону менее чем за 18 месяцев. Это в шесть раз меньше, чем потребовалось зонду «Новые горизонты», который двигался на скорости 58 000 км/ч.

Звучит впечатляюще. Но даже в таком случае корабль на электромагнитных двигателях будет лететь к Проксиме Центавра 13 000 лет. Близко, но все еще недостаточно. Кроме того, пока в этой технологии не будут расставлены все точки над ё, рано говорить о ее использовании.

Ядерное тепловое и ядерное электрическое движение

Еще одна возможность осуществить межзвездный перелет — использовать космический аппарат, оснащенный ядерными двигателями. NASA десятилетиями изучало такие варианты. В ракете на ядерном тепловом движении можно было бы использовать урановые или дейтериевые реакторы, чтобы нагревать водород в реакторе, превращая его в ионизированный газ (плазму водорода), который затем будет направляться в сопло ракеты, генерируя тягу.

NTR

Ракета с ядерным электрическим приводом включает тот же реактор, преобразующий тепло и энергию в электроэнергию, которая затем питает электродвигатель. В обоих случаях ракета будет полагаться на ядерный синтез или ядерное деление для создания тяги, а не на химическое топливо, на котором работают все современные космические агентства.

По сравнению с химическими двигателями, у ядерных есть неоспоримые преимущества. Во-первых, это практически неограниченная энергетическая плотность по сравнению с ракетным топливом. Кроме того, ядерный двигатель также будет вырабатывать мощную тягу по сравнению с используемым объемом топлива. Это позволит сократить объемы необходимого топлива, а вместе с тем вес и стоимость конкретного аппарата.

Хотя двигатели на тепловой ядерной энергии пока в космос не выходили, их прототипы создавались и испытывались, а предлагалось их еще больше.

И все же, несмотря на преимущества в экономии топлива и удельном импульсе, самая лучшая из предложенных концепций ядерного теплового двигателя имеет максимальный удельный импульс в 5000 секунд (50 кН·c/кг). Используя ядерные двигатели, работающие на ядерном делении или синтезе, ученые NASA могли бы доставить космический аппарат на Марс всего за 90 дней, если Красная планета будет в 55 000 000 километрах от Земли.

Но если говорить о путешествии к Проксиме Центавра, ядерной ракете потребуются столетия, чтобы разогнаться до существенной доли скорости света. Потом потребуются несколько десятилетий пути, а за ними еще много веков торможения на пути к цели. Мы все еще в 1000 годах от пункта назначения. Что хорошо для межпланетных миссий, не так хорошо для межзвездных.

Человечество создало «пластиковую планету»

Человечество создало «пластиковую планету»

1412067873901_wps_10_MANDATORY_BYLINE_PIC_FROM

К середине века океаны и материки планеты Земля будут покрыты слоями пластиковых отходов из-за деятельности человечества, говорится в результатах исследования, осуществлённого сотрудниками университета Лейчестер.

В рамках исследования, результаты которого были опубликованы в журнале Anthropocene, учёные изучали доказательства того, что мы живём в эру Антропоцена — эпоху, в которую человечество серьёзно влияет на геологию планеты. Учёные пришли к выводу, что поверхность планеты значительно изменяется из-за производства долгоживущих материалов, и в результате мы входим в «Пластиковый Век».

Ян Заласевич, профессор палебиологии на кафедре геологии университета Лейчестер, объяснил:

«Наши дедушки и бабушки практически не знали пластик, когда были детьми. Однако теперь пластиковые материалы практически незаменимы в нашей жизни. Они используются везде: в упаковке еды, контейнерах для воды и молока, коробках для яиц, йогурта и шоколада, в упаковках для лекарств. Кроме того, из пластика состоит большая часть нашей одежды».

«Пластик можно найти в любом месте Земли, от вершин гор до глубин океана — и однажды, в далёком будущем он станет ископаемым. Мы производим миллиард тонн пластика каждый три года. Если бы весь пластик, произведённый за последние несколько десятилетий, был упаковочной плёнкой, ей можно было бы покрыть всю Землю. Учитывая постоянный рост производства, к середине века добавится ещё несколько таких воображаемых слоёв».

Исследователи говорят, что пластик имеет такое долгосрочное воздействие на геологию планеты из-за своей инертности и практически полного иммунитета к биоразложению. В результате, когда местность загрязняется пластиковыми отходами, они становятся частью почвы, оказываются в море и убивают планктон, рыбу и морских птиц.

По материалам Science Daily

Новый полимер позволит создавать самовосстанавливающиеся искусственные мышцы

Новый полимер позволит создавать самовосстанавливающиеся искусственные мышцы

160128154827_1_540x360

Представьте полимер с составными частями, которые могут передать что-либо в окружающую среду и затем регенерироваться для повторного использования. Или полимер, который может поднимать тяжести, сжимаясь и разжимаясь подобно мышцам.

Для этого полимер должен состоять из твёрдых и мягких наночастиц с разными характеристиками, организованных особенным способом. Совершенно новый гибридный полимер такого типа был разработан исследователями Северо-западного университета. Его можно использовать для производства искусственных мышц и других жизнеподобных материалов; для доставки лекарств, биомолекул и химикатов; для создания самовосстанавливающихся материалов; в качестве заменяемого источника энергии.

«Мы создали удивительный новый полимер с наночастицами, которые могут извлекаться и затем химически воссоздаваться множество раз», — говорит ведущий автор исследования Сэмюэл Ступп.

Гибридный полимер соединяет в себе два известных вида полимеров: с крепкими ковалентными связями и со слабыми нековалентными связями, известные как «супрамолекулярные полимеры». Интегрированный полимер состоит из двух разных составных частей, с которыми и работают учёные для наделения полимера полезными свойствами.

«Наше открытие может перевернуть мир полимеров и открыть третью главу в их истории, став началом гибридных полимеров, — заявил Ступп. — Она будет идти за первой главой широко используемых ковалентных полимеров и более новым классом супрамолекулярных полимеров».

Учёным предстоит ещё много работы, но впереди нас ожидает создание материалов с уникальными свойствами — например, способностью саморазбираться и самовосстанавливаться — которым найдётся множество применений в реальной жизни.

По материалам Science Daily

Лучшие подарки любимым на День святого Валентина

Лучшие подарки любимым на День святого Валентина

DSV_Pic_Happy_VD

Сегодня, конечно, немного рановато поздравлять с Днём святого Валентина, но вот готовиться надо начинать заранее, чтобы в последний момент не бегать по магазинам в поисках какой-нибудь бесполезной безделушки, которая станет очередным пылесборником на полке, пока её не сошлют на дачу на вечное хранение. Если уж дарить, то что-то полезное. Многие, например, от чего-нибудь умного, с гигагерцами, гигабайтами и мегапикселями, не отказались бы. От чего конкретно? В данном видео мы предложим вам нашу подборку вариантов ответа на этот вопрос.

IUNI N1

Начнём, пожалуй, с чего-то относительно недорогого и относительно универсального. Iuni N1. За 155 долларов мы получим очень тонкий смартфон, 6,3 мм, весь покрытый модным 2,5D-стеклом. Такое вот маленькое воплощение дизайна. По характеристикам, правда, до флагманов этому Iuni ещё шагать и шагать, но за такую красоту ему можно многое простить.

OnePlus X

А вот любителям более технически совершенных решений больше подойдёт OnePlus X. Своеобразный бюджетник от OnePlus, этакий убийца среднего класса. За свои деньги он предлагает проверенное железо, некогда стоявшее лишь на флагманских смартфонах, а также интересный дизайн с всё тем же модным нынче 2,5D-стеклом. Камера кому-то может показаться слабоватой, но в целом смартфон вышел удачным, так что если вы не гонитесь за разнообразными модными USB Type-C и сканерами отпечатков пальцев, то это прекрасный выбор за 249 долларов.

LeTV X3-40

Если же хочется чего-то побольше… Заметно побольше… Такое, чтобы прям ух… То стоит смотреть в сторону LeTV. Да, эти ребята делают и крупные смартфоны, но стоит обратить внимание и на телевизор — за 340 долларов можно поставить в гостиной X3 от этой компании и наслаждаться просмотром любимых фильмов с любимым человеком в уютной обстановке. Все подробности есть в обзоре, штука действительно достойная.

Wileyfox Storm

В обзоре на AndroidInsider.ru коллеги весьма тепло отзывались о таком смартфоне, как Wileyfox Storm. Он тоже больше гиковский, конечно, да и по размерам великоват для дамской ладошки, но очень симпатичный и за свои деньги плотно подбирается к заметно более дорогим игрушкам на Android. Опять же, тут любимый многими Cyanogen и симпатичная лисья мордочка на спинке. Ну и характеристики не подкачали, камера хорошая, 3 гигабайта RAM и тому подобное — всё как надо за 189 долларов.

Wileyfox Swift

Есть у нас вариант и побюджетнее, причём от тех же хитрых лис из Wileyfox. Swift мы периодически упоминаем в разных подборках. За 109 условных единиц повседневные задачи смартфон выполняет на 5+, устройство особо не греется, не лагает и вызывает самые приятные впечатления. Да, с точки зрения технических характеристик здесь всё не так празднично, но не всем же нужны серверные мощности в кармане. А выглядит он очень приятно. И мордочка лисички на задней крышке никуда не делась.

Есть, конечно, возможность купить не только смартфоны и прочие подобные гаджеты, и даже телевизор дарить не обязательно. На праздничной страничке JD.ru вариантов нетехнических подарков с внушительными, до 75 процентов, скидками — заметное количество. Выбирайте, а то времени осталось не так уж и много…

#видео | Space X тестирует парашюты для доставки астронавтов на Землю

#видео | Space X тестирует парашюты для доставки астронавтов на Землю

Space X тестирует посадочные парашюты для доставки астронавтов на Землю

Космическое агентство NASA опубликовало видеозапись, демонстрирующую процесс испытаний парашютной системы посадочного модуля Dragon. Испытания являются важной частью программы проверки, необходимой для выдачи компании Space X сертификации. Роль посадочного модуля в испытаниях сыграл тяжёлый металлический блок, который сбросили с грузового самолёта Lockheed C-130 Hercules. В будущем именно так компания планирует возвращать астронавтов на Землю с Международной космической станции.

Подобные тесты необходимы прежде всего для проверки надёжности посадочной системы. И хотя инженеры Space X пока используют для посадки исключительно парашюты, в будущем не исключено, что в дело пойдут репульсивные двигатели, без которых не обойтись при посадке на жёсткую поверхность других планет вроде Марса. Тем более ранее мы уже публиковали видео огневых испытаний таких двигателей в деле.

Этот тест не включал в себя использование вспомогательных парашютов, которые вытягивают за собой основные. Вспомогательные парашюты уже испытывались ранее в другом тесте, видеозапись которого вы можете посмотреть по этой ссылке.

Proximity Hat – шапка-гид для людей, лишённых зрения

Proximity Hat – шапка-гид для людей, лишённых зрения

Proximity Hat – шапка-гид для людей, лишённых зрения

Мы уже неоднократно писали на страницах нашего сайта о многочисленных устройствах, которые могут значительно облегчить жизнь незрячих людей. На этот раз расскажем вам об изобретении учёного из немецкого Технологического института Карлсруэ. Исследователь разработал специальный головной убор, который позволит слепым людям ориентироваться в пространстве при помощи тактильных воздействий. Устройство получило название Proximity Hat.

Идея создания подобного гаджета пришла в голову немецкому исследователю Флориану Брауну достаточно давно. А что, если головной убор будет оказывать давление на голову человека именно с той стороны, с которой находится препятствие, с которым он может столкнуться? Учёный разработал и собрал полностью рабочий прототип устройства. Умная шапка снабжена шестью ультразвуковыми модулями, каждый из которых производит 50 замеров расстояния до окружающих объектов в секунду. Дальность работы модулей варьируется от нескольких сантиметров до нескольких метров.

Как только сенсор замечает объект на своём пути, он мягко надавливает на голову человека с той стороны, в которой находится этот объект. Чем ближе объект – тем давление сильнее, что позволяет пользователю приблизительно представлять своё положение в пространстве относительно различных поверхностей и предметов. По сути, слепой человек может ощущать направление и расстояние исключительно при помощи тактильных прикосновений головного убора.

Удобство подобной системы неоспоримо, так как она оставляет остальные чувства, такие как, например, слух, незанятыми, да и руки человека остаются полностью свободными, позволяя ему делать ими всё что угодно. Изобретатель видит применение своего устройства не только в упомянутой выше сфере. Пользоваться Proximity Hat смогут, например, пожарные в условиях задымлённых помещений, а также представители других профессий.

10 важных медицинских прорывов и открытий 2015 года

10 важных медицинских прорывов и открытий 2015 года

medicine

Прошедший год для науки был очень плодотворным. Особенного прогресса ученые достигли в сфере медицины. Человечество совершило удивительные открытия, научные прорывы и создало множество полезных медикаментов, которые непременно в скором времени окажутся в свободном доступе. Предлагаем ознакомиться с десяткой самых удивительных медицинских прорывов 2015 года, которые обязательно внесут серьезный вклад в развитие медицинских услуг в самое ближайшее время.

Открытие теиксобактина

10-antibiotics

В 2014 году Всемирная организация здравоохранения предупредила всех о том, что человечество вступает в так называемую постантибиотическую эру. И ведь она оказалась правой. Наука и медицина аж с 1987 не производили действительно новых видов антибиотиков. Однако болезни не стоят на месте. Каждый год появляются новые заразы, более устойчивые к существующим медикаментам. Это стало настоящей мировой проблемой. Тем не менее в 2015 году ученые совершили открытие, которое, по их мнению, привнесет кардинальные перемены.

Ученые открыли новый класс антибиотиков из 25 противомикробных препаратов, включая очень важный, получивший названием теиксобактин. Этот антибиотик уничтожает микробов, блокируя их способность производить новые клетки. Другими словами, микробы под воздействием этого лекарства не могут развиваться и вырабатывать со временем устойчивость к препарату. Теиксобактин к настоящему моменту доказал свою высокую эффективность в борьбе с резистентным золотистым стафилококком и несколькими бактериями, вызывающими туберкулез.

Лабораторные испытания теиксобактина проводились на мышах. Подавляющее большинство экспериментов показали эффективность препарата. Человеческие испытания должны начаться в 2017 году.

Медики вырастили новые голосовые связки

9-feature-vocal-cords

Одно из самых интересных и перспективных направлений в медицине является регенерация тканей. В 2015 году список воссозданных искусственным методом органов пополнился новым пунктом. Врачи из Висконсинского университета научились выращивать человеческие голосовые связки фактически из ничего.

Группа ученых под руководством доктора Натана Вельхэна биоинженерным способом создала ткань, способную имитировать работу слизистой оболочки голосовых связок, а именно ту ткань, которая представляется двумя лепестками связок, которые вибрируя позволяют создавать человеческую речь. Клетки-доноры, из которых впоследствии были выращены новые связки, были взяты у пяти пациентов-добровольцев. В лабораторных условиях за две недели ученые вырастили необходимую ткань, после чего добавили ее к искусственному макету гортани.

Создаваемый полученными голосовыми связками звук, ученые описывают как металлический и сравнивают его со звуком роботизированного казу (игрушечный духовой музыкальный инструмент). Однако ученые уверены в том, что созданные ими голосовые связки в реальных условиях (то есть при имплантации в живой организм) будут звучать почти как настоящие.

В рамках одного из последних экспериментов на лабораторных мышах с привитым человеческим иммунитетом исследователи решили проверить, будет ли организм грызунов отторгать новую ткань. К счастью, этого не случилось. Доктор Вельхэм уверен, что ткань не будет отторгаться и человеческим организмом.

Лекарство от рака может помочь и пациентам с болезнью Паркинсона

8-parkinsons

Тисинга (или нилотиниб) является проверенным и одобренным лекарством, которое обычно используют для лечения людей с признаками лейкемии. Однако новое исследование, проведенное медицинским центром Джорджтаунского университета, показывает, что лекарство Тасинга может являться очень сильным средством для контроля моторных симптомов у людей с болезнью Паркинсона, улучшая их моторные функции и контролируя немоторные симптомы этой болезни.

Фернандо Паган, один из докторов, проводивших данное исследование, считает, что нилотинибная терапия может являться первым в своем роде эффективным методом снижения деградации когнитивных и моторных функции у пациентов с нейродегенеративными заболеваниями, такими как болезнь Паркинсона.

Ученые в течение шести месяцев давали увеличенные дозы нилотиниба 12 пациентам-добровольцам. У всех 12 пациентов, прошедших данное испытание препарата до конца, наблюдалось улучшение моторных функций. У 10 из них отметили значительное улучшение.

Основной задачей данного исследования была проверка безопасности и безвредности нилотиниба на человеческий организм. Используемая доза препарата была гораздо меньше той дозы, которая обычно дается пациентам с лейкемией. Несмотря на то, что препарат показал свою эффективность, исследование все же проводилось на небольшой группе людей без привлечения контрольных групп. Поэтому перед тем, как Тасингу начнут использовать в качестве терапии болезни Паркинсона, придется провести еще несколько испытаний и научных исследований.

Первая в мире 3D-напечатанная грудная клетка

7-rib-cage

Последние несколько лет технология 3D-печати проникает во многие сферы, приводя к удивительным открытиям, разработкам и новым методам производства. В 2015 году доктора из университетского госпиталя Саламанка в Испании провели первую в мире операцию по замене поврежденной грудной клетки пациента на новый 3D-напечатанный протез.

Человек страдал редким видом саркомы, и у врачей не осталось другого выбора. Чтобы избежать распространение опухоли дальше по организму, специалисты удалили у человека почти всю грудину и заменили кости титановым имплантатом.

Как правило, имплантаты для крупных отделов скелета производят из самых разных материалов, которые со временем могут изнашиваться. Помимо этого, замена столь сложного сочленения костей, как кости грудины, которые, как правило, уникальны в каждом отдельном случае, потребовала от врачей провести тщательное сканирование грудины человека, чтобы разработать имплантат нужного размера.

В качестве материала для новой грудины было решено использовать титановый сплав. После проведения высокоточной трехмерной компьютерной томографии, ученые использовали принтер Arcam стоимостью 1,3 миллиона долларов и создали новую титановую грудную клетку. Операция по установке новой грудины пациенту прошла успешно, и человек уже прошел полный курс реабилитации.

Из клеток кожи в клетки мозга

6-brain-neurons

Ученые из калифорнийского Института Солка в Ла-Холья посвятили ушедший год исследованиям человеческого мозга. Они разработали метод трансформирования клеток кожи в мозговые клетки и уже нашли несколько полезных сфер применения новой технологии.

Следует отметить, что ученые нашли способ превращения кожных клеток в старые мозговые клетки, что упрощает дальнейшее их использование, например, при исследованиях болезней Альцгеймера и Паркинсона и их взаимосвязи с эффектами, вызываемыми старением. Исторически сложилось, что для таких исследований применялись клетки мозга животных, однако ученые в этом случае были ограничены в своих возможностях.

Относительно недавно ученые смогли превратить стволовые клетки в клетки мозга, которые можно использовать для исследований. Однако это довольно трудоемкий процесс, и на выходе получаются клетки, не способные имитировать работу мозга пожилого человека.

Как только исследователи разработали способ искусственного создания клеток мозга, они направили свои усилия на создание нейронов, которые обладали бы возможностью производства серотонина. И хотя полученные клетки обладают лишь крошечной долей возможностей работы человеческого мозга, они активно помогают ученым в исследованиях и поиске лекарств от таких болезней и расстройств, как аутизм, шизофрения и депрессия.

Противозачаточные таблетки для мужчин

5-man

Японские ученые из Научно-исследовательского института исследований микробных заболеваний в Осаке опубликовали новую научную работу, согласно которой в недалеком будущем мы сможем производить реально действующие противозачаточные таблетки для мужчин. В своей работе ученые описывают исследования препаратов «Такролимус» и «Цикслоспорин А».

Обычно эти лекарства используются после проведения операций по трансплантации органов для подавления иммунной системы организма, чтобы та не отторгала новую ткань. Блокада происходит благодаря ингибированию производства энзима кальцинейрина, который содержит белки PPP3R2 и PPP3CC, обычно имеющиеся в мужском семени.

В своем исследовании на лабораторных мышах ученые обнаружили, что как только в организмах грызунов производится недостаточно белка PPP3CC, то их репродуктивные функции резко сокращаются. Это натолкнуло исследователей к выводу, что недостаточный объем этого белка может привести к стерильности. После более тщательного изучения специалисты заключили, что данный белок дает клеткам спермы гибкость и необходимые силу и энергию для проникновения через мембрану яйцеклетки.

Проверка на здоровых мышах только подтвердила их открытие. Всего пять дней применения препаратов «Такролимус» и «Цикслоспорин А» привело к полной бесплодности мышей. Однако их репродуктивная функция полностью восстановилась всего через неделю после того, как им перестали давать эти препараты. Важно отметить, что кальцинейрин не является гормоном, поэтому применение препаратов никоим образом не снижает половое влечение и возбудимость организма.

Несмотря на многообещающие результаты, потребуется несколько лет для создания реальных мужских противозачаточных таблеток. Около 80 процентов исследований на мышах не применимы для человеческих случаев. Однако ученые по-прежнему надеются на успех, так как эффективность препаратов была доказана. Кроме того, аналогичные препараты уже прошли человеческие клинические испытания и широко используются.

Печать ДНК

4-dna

Технологии 3D-печати привели к появлению уникальной новой индустрии — печати и продаже ДНК. Правда, термин «печать» здесь скорее используется именно для коммерческих целей, и необязательно описывает то, что же в этой сфере происходит на самом деле.

Исполнительный директор компании Cambrian Genomics объясняет, что данный процесс лучше всего описывает фраза «проверка на ошибки», нежели «печать». Миллионы частей ДНК помещаются на крошечные металлические подложки и сканируются компьютером, который отбирает те цепи, которые в конечном итоге должны будут составлять всю последовательность ДНК-цепочки. После этого лазером аккуратно вырезаются нужные связи и помещаются в новую цепочку, предварительно заказанную клиентом.

Такие компании, как Cambrian, считают, что в будущем люди смогут благодаря специальному компьютерному оборудованию и программному обеспечению создавать новые организмы просто для развлечения. Конечно же, такие предположения сразу же вызовут праведный гнев людей, сомневающихся в этической корректности и практической пользе данных исследований и возможностей, но рано или поздно, как бы мы этого хотели или не хотели, мы к этому придем.

Сейчас же ДНК-печать демонстрирует немногообещающий потенциал в медицинской сфере. Производители лекарств и исследовательские компании — вот список первых клиентов таких компаний, как Cambrian.

Исследователи из Каролинского института в Швеции пошли еще дальше и начали создавать из ДНК-цепочек различные фигурки. ДНК-оригами, как они это называют, может на первый взгляд показаться обычным баловством, однако практический потенциал использования у этой технологии тоже имеется. Например, его можно будет применять при доставке лекарственных средств в организм.

Наноботы в живом организме

3-nanobot

В начале 2015 года сфера робототехники одержала большую победу, когда группа исследователей из Калифорнийского университета в Сан-Диего объявила о том, что провела первые успешные тесты с применением наноботов, которые выполнили поставленную перед ними задачу, находясь внутри живого организма.

Живым организмом в данном случае выступали лабораторные мыши. После помещения наноботов внутрь животных микромашины направились к желудкам грызунов и доставили помещенный на них груз, в качестве которого выступали микроскопические частички золота. К концу процедуры ученые не отметили никаких повреждений внутренних органов мышей и тем самым подтвердили полезность, безопасность и эффективность наноботов.

Дальнейшие тесты показали, что доставленных наноботами частичек золота в желудках остается больше, чем тех, которые были просто введены туда с приемом пищи. Это натолкнуло ученых на мысль о том, что наноботы в будущем смогут гораздо эффективные доставлять нужные лекарства внутрь организма, чем при более традиционных методах их введения.

Моторная цепь крошечных роботов состоит из цинка. Когда она попадает в контакт с кислотно-щелочной средой организма, происходит химическая реакция, в результате которой производятся пузырьки водорода, которые и продвигают наноботов внутри. Спустя какое-то время наноботы просто растворяются в кислотной среде желудка.

Несмотря на то, что данная технология разрабатывается уже почти десятилетие, только в 2015 году ученые смогли провести ее фактические тесты в живой среде, а не обычных чашках Петри, как делалось много раз до этого. В будущем наноботов можно будет использовать для определения и даже лечения различных болезней внутренних органов, путем воздействия нужными лекарствами на отдельные клетки.

Инъекционный мозговой наноимплантат

2-mesh

Группа ученых из Гарварда разработала имплантат, обещающий возможность лечения ряда нейродегенеративных расстройств, которые приводят к параличу. Имплантат представляет собой электронное устройство, состоящее из универсального каркаса (сетки), к которому в дальнейшем можно будет подсоединять различные наноустройства уже после введения его в мозг пациента. Благодаря имплантату можно будет следить за нейронной активностью мозга, стимулировать работу определенных тканей, а также ускорять регенерацию нейронов.

Электронная сетка состоит из проводящих полимерных нитей, транзисторов или наноэлектродов, которые соединяют между собой пересечения. Почти вся площадь сетки состоит из отверстий, что позволяет живым клеткам образовывать новые соединения вокруг нее.

К началу 2016 года команда ученых из Гарварда по-прежнему проводит тесты безопасности использования подобного имплантата. Например, двум мышам имплантировали в мозг устройство, состоящее из 16 электрических компонентов. Устройства успешно используются для мониторинга и стимуляции определенных нейронов.

Искусственное производство тетрагидроканнабинола

1-marijuana

Многие годы марихуана использовалась в медицине в качестве обезболивающего средства и в частности для улучшения состояний больных раком и СПИДом. В медицине также активно используется и синтетический заменитель марихуаны, а точнее ее основного психоактивного компонента тетрагидроканнабинола (или THC).

Однако биохимики из Технического университета Дортмунда объявили о создании нового вида дрожжевого грибка, производящего THC. Более того, по неопубликованным данным известно, что эти же ученые создали еще один вид дрожжевого грибка, который производит каннабидиол, другой психоактивный компонент марихуаны.

В марихуане содержится сразу несколько молекулярных соединений, которые интересуют исследователей. Поэтому открытие эффективного искусственного способа создания этих компонентов в больших количествах могло бы принести медицине огромную пользу. Однако метод обычного выращивания растений и последующая добыча необходимых молекулярных соединений является сейчас наиболее эффективным способом. Внутри 30 процентов сухой массы современных видов марихуаны может содержаться нужный компонент THC.

Несмотря на это, дортмундские ученые уверены, что смогут найти более эффективный и быстрый способ добычи THC в будущем. К настоящему моменту созданный дрожжевой грибок повторно выращивается на молекулах такого же грибка вместо предпочтительной альтернативы в виде простых сахаридов. Все это приводит к тому, что с каждой новой партией дрожжей уменьшается и количество свободного компонента THC.

В будущем ученые обещают оптимизировать процесс, максимизировать производство THC и увеличить масштабы до индустриальных нужд, что в конечном итоге удовлетворит нужды медицинских исследований и европейских регуляторов, которые ищут новый способы производства тетрагидроканнабинола без выращивания самой марихуаны.